在挪威提交的附件E信息(2007年)中,Bustnes等人(2006年)得出结论认为,在濒危的挪威亚种黑背鸥中,血液和蛋内的乙型六氯环己烷水平较高,其中一个原因可能就是其在迁徙过程中,途径六氯环乙烷浓度相当高的黑海。
According to submitted Annex E information by Norway (2007) Bustnes et al. (2006) concluded that beta-HCH levels in blood and eggs were higher in the endangered subspecies of the black-backed gulls in Norway.
One explanation might be the migration route through the Black Sea where HCH levels are considerable high.
在对印度南部留鸟和迁徙鸟进行的一次研究显示,有机氯污染模式因迁徙行为而有不同。
In a study of resident and migratory birds collected from South India, the organochlorine contamination pattern varied depending on the migratory behaviour.
终身居住在同一地区的留鸟体内具有较高浓度的六氯环乙烷(14-8,800 纳克/克净重)。
Resident birds living in the same region for their entire life span contained relatively greater concentrations of HCHs (14-8800 ng/g wet weight).
就那些以欧洲、俄罗斯、中东、巴布亚新几内亚和澳大利亚为繁殖地的长距离迁徙鸟而言,体内的六氯环乙烷浓度为19-5,500 纳克/克。
Long distance migratory birds which have their breeding grounds in Europe, Russia, the Middle East, Papua New Guinea and Australia contained HCHs at levels of 19-5500 ng/g.
在各种六氯环乙烷异构体中,乙型六氯环己烷是所有鸟类体内的主要污染物(联合国环境规划署,2003年)。
Among various HCH isomers, beta-HCH was the predominant contaminant in all the bird species (UNEP, 2003).
随后进行的一项调查(Senthilkumar等人,2001年)也发现了类似的结果——这次调查确定了印度蝙蝠体内的六氯环乙烷浓度(主要为乙型异构体,达330纳克/克净重),结果显示1998年的浓度高于1995年的浓度,而且相对于世界其他地方而言,也是最高的。
Similar levels were reported in a later investigation (Senthilkumar et al., 2001) which included the determination of HCHs concentrations (mainly the beta-isomer, up to 330 ng/g wet weight) in Indian bats, which were higher in 1998 than in 1995 and highest compared to other parts of the world.
在俄罗斯北部,土著人口使用工业级六氯环己烷防止害虫对家养驯鹿的侵害,这是乙型六氯环己烷的局部来源之一(李等人,2004年)。
A local source of beta-HCH was the usage of technical HCH in the Russian North against nuisance insects on domesticated reindeer by indigenous human populations (Li et al., 2004).
但对于这类接触中乙型六氯环己烷的具体水平,尚没有量化的估计数据。
However, no quantitative estimates of these exposure levels exist.
2.3.2 长距离环境迁移引起的接触
2.3.2 Exposure as a result of long-range environmental transport
一般认为,乙型六氯环己烷向北极区迁移的主要途径是洋流(李等人,2002年)。
The main transportation pathway of beta-HCH to the Arctic is assumed to be ocean currents (Li et al., 2002).
相对于海水中甲型六氯环乙烷而言,乙型六氯环己烷的水平较低——其部分原因是排放减少了,空间和时间分布不同,如:在甲型六氯环乙烷达到其最高水平之后的10年左右,1994年北美北冰洋的乙型六氯环己烷水平达到了最高水平(将近0.3纳克/升)。
Compared to levels of alpha-HCH in sea water, beta-HCH levels were lower - partly due to reduced emissions and different spatial and temporal distributions, e.g. beta-HCH reached its peak (approximately 0.3 ng/l) in the North American Arctic Ocean in 1994, around 10 years after the alpha-HCH levels had reached their peak.
受北太平洋和白令海上游水域的富集影响(1988-1999年期间大约为1.3 纳克/升),楚科奇海的浓度较高,而后,在北极的内部海区,浓度水平开始下降(李与麦克唐纳,2005年)。
Enrichment of the upper waters of the North Pacific Ocean and Bering Sea (approximately 1.3 ng/l 1988-1999) caused higher concentrations in the Chukchi Sea and subsequent decreases towards the Arctic interior ocean (Li and Macdonald, 2005).
1999年在加拿大群岛的地表水中,乙型六氯环己烷的浓度为0.1 纳克/升(Bidleman等人,2007年)。
Data on beta-HCH from surface water of the Canadian Archipelago in 1999 showed concentrations of 0.1 ng/l (Bidleman et al., 2007).
这种空间分布也反应在生物区的水平中。
This spatial distribution is also reflected in the levels in biota.
Hoekstra等人(2002年)发现,在白令海与波弗特海之间的迁移路线中,北极露脊鲸鲸脂中的α-/乙型六氯环己烷比率出现了逆向变化。
Hoekstra et al. (2002) found that bowhead whales exhibit a reversal in their blubber alpha-/beta-HCH ratios on their migration route between the Bering to the Beaufort Sea.
在加拿大群岛海洋哺乳动物中,六氯环乙烷异构体的残留物有所上升,这有可能与水中六氯环乙烷异构体的高浓度有关,因为北冰洋中最丰富的有机氯是六氯环乙烷异构体(《北美地区行动计划》,2006年)。
Also elevated residues of HCH isomers in marine mammals of the Canadian Archipelago are likely from the high concentrations of HCH isomers in the water because HCH isomers are the most abundant organochlorines in the Arctic Ocean (NARAP, 2006).
在北极非生物环境中,乙型六氯环己烷的水平较低,只所以没有关于乙型六氯环己烷和其他六氯环乙烷异构体的研究,有部分原因就是因为该环境中的浓度较低。
Beta-HCH is not so abundant in the Arctic abiotic environment and therefore it has not been studied as well as the other HCH isomers, partly due to its low concentrations.
北极空气的测算值较低,如:2000-2003年期间,在位于北极环极的六个地点,测算值小于1皮克/立方(苏等人,2006年)。
Measured levels in the Arctic air (e.g. < 1 pg/m3 from six Arctic circumpolar located sites between 2000-2003, Su et al.
北极陆地和淡水生态系统中的测算值也较低(北极监测及评估方案,2004年)。
(2006)) and in terrestrial as well as freshwater ecosystems were low (AMAP, 2004).
在俄罗斯北部,污染水平的空间变化较大(北极监测及评估方案, 2004年)。
HCHs also show a high degree of spatial variability in the levels of contamination across the Russian North (AMAP, 2004).
北极陆地环境(包括食肉动物)中的水平要比海洋环境相及其食肉动物的水平低很多。
Levels in the Arctic terrestrial environment (including carnivores) are much lower than in the marine compartment and its predators.
但在阿拉斯加雄性北极狐的脂肪中发现了乙型六氯环己烷(达810纳克/克净重)(北极监测及评估方案,2004年)。
However, beta-HCH has been detected in the fat of male Arctic foxes (up to 810 ng/g wet weight) in Alaska (AMAP, 2004).
根据发现,在波弗特海的种群中,北极熊体内的六氯环乙烷水平最高(脂肪的水平大约为770 纳克/克净重)。
The highest levels of HCH in polar bears were detected in the Beaufort Sea population (approx. 770 ng/g wet weight in fat).
乙型六氯环己烷占六氯环乙烷残余物的93%。
Beta-HCH accounted for 93 % of HCH residues.